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Abstract: We demonstrate an automated segmentation method for in-vivo 
3D optical coherence tomography (OCT) imaging of the lamina cribrosa 
(LC). Manual segmentations of coronal slices of the LC were used as a gold 
standard in parameter selection and evaluation of the automated technique. 
The method was validated using two prototype OCT devices; each had a 
subject cohort including both healthy and glaucomatous eyes. Automated 
segmentation of in-vivo 3D LC OCT microstructure performed comparably 
to manual segmentation and is useful for investigative research and in 
clinical quantification of the LC. 
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1. Introduction 

Glaucoma is an optic neuropathy marked by irreversible loss of the retinal ganglion cells 
resulting in functional visual field (VF) deficits and is the second leading cause of blindness 
worldwide [1]. Early detection is essential to retard disease progression and retain maximal 
vision. Optical coherence tomography (OCT) is an imaging technology implemented in 
clinical eye care for examining tissue structure, and is used for early glaucoma detection. 
Traditionally this is accomplished by measuring retinal nerve fiber layer thickness [2–4], as 
well as the thickness of other retinal layers [5–8]. More recently, the lamina cribrosa (LC) has 
been investigated as another potential location to identify glaucomatous damage [9–11]. 

The LC is a meshwork structure composed primarily of collagen fibers located deep 
within the optic nerve head, and is the supportive tissue surrounding retinal nerve fibers as 
they exit the eye. The LC is regarded as a primary target of glaucomatous insult [12]. Finite 
element modeling of the LC has shown it susceptible to biomechanical stress caused by 
elevated intraocular pressure (IOP) associated with glaucoma [13,14]. Until recently, full 
three-dimensional (3D) in-vivo imaging of the LC has been impossible. Fast scanning 
spectral-domain (SD-) OCT and swept-source (SS-) OCT systems permit such imaging, and 
consequently several new studies evaluated the LC in healthy and glaucomatous eyes, 
primarily by examining the anterior and posterior boundaries along with lamina insertion 
points using manual delineation methods on two-dimensional cross sectional slices 
[10,11,15]. However, signal attenuation and shadowing from vasculature and other reflective 
structures make measurements involving the posterior lamina and insertion points difficult. 

In-vivo investigations of LC microstructure to date have only described local irregularities 
in the anterior surface of the lamina and LC thickness [16,17]. Individual pores have been 
imaged but not quantified in 3D [18,19]. The only studies to investigate laminar pore shape 
and size are those using fundus photography and en face confocal scanning laser 
ophthalmoscopy (CSLO) images [20,21]. More recently, adaptive optics has augmented 
studies targeting pore geometry by improving contrast and transverse resolution [22,23]. 
While CSLO is capable of imaging pore and beam structure at various depths, poor axial 
resolution restricts the ability to attain detailed 3D tissue structure [24]. In OCT, the 3D 
nature of the microstructure has only been partially explored; specifically, previous studies 
haven’t considered the LC beams and pores with depth. Because the axons pass through the 
entire depth of the LC on their way to the brain, a comprehensive evaluation should consider 
this structure in its 3D entirety. The purpose of this study was to develop and validate an 
automated segmentation method for microstructure in 3D OCT scans of the LC. To assess the 
robustness of the proposed segmentation method, images acquired by two iterations of OCT 
technology were used. 

2. Methods 

3D LC images acquired by two OCT systems were analyzed using an automated 
microstructure segmentation analysis and compared with manual segmentation. The study 
was approved by the University of Pittsburgh’s Institutional Review Board and adhered to the 
tenets of the Declaration of Helsinki. All subjects provided informed consent prior to 
enrollment in the study. The cohort used in this study included both healthy and glaucoma 
subjects, enrolled to Pittsburgh imaging technology trial (PITT) at the University of 
Pittsburgh medical center (UPMC) Eye Center. Study participants underwent a 
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comprehensive ocular examination of the anterior and posterior segments, intraocular 
pressure measurement and visual field testing. Subjects were divided into healthy and 
glaucomatous groups according to conventional clinical criteria based on typical 
glaucomatous features observed in clinical examination and VF findings. 

Two prototype OCT systems that allow thorough sampling of the optic nerve head region 
were used for data acquisition: A SS-OCT and a multimodal retinal imaging system with 
adaptive optics (MAO-OCT), whose imaging channels include SD-OCT, confocal scanning 
laser ophthalmoscopy, and a line scanning ophthalmoscope. Both devices have been 
previously described in detail [25,26]. Both devices operate with a light source centered at a 
wavelength of 1050nm, enabling greater tissue penetration than conventional SD-OCT, ideal 
for imaging deeper ocular structures such as the LC. The SS-OCT system is equipped with 
automated registration software utilizing orthogonal scans of horizontal and vertical fast-
scanning directions [27]. With the MAO-OCT, the additional imaging channels are used for 
precise spatial registration of individual SD-OCT B-scan frames. Scanning with the SS-OCT 
device lasted approximately 2 seconds, and acquired a 12° × 12° (400 × 400 pixel) data cube 
centered on the LC where each A-scan had a depth of 900 pixels. The theoretical transverse 
and axial resolutions for SS-OCT were 18μm and 5μm, respectively. Acquisition with the 
MAO-OCT device required dilation using phenylephrine and tropicamide (for optimal AO 
performance) and each scan took nearly 7 seconds. MAO-OCT scans were collected from a 
6° × 6° (1024 × 200 pixel) data volume centered on the LC, where each A-scan had a depth of 
512 pixels. The transverse and axial resolutions for MAO-OCT were 5μm and 4.5μm, 
respectively. MAO-OCT scans were digitally resampled post-hoc using bilinear interpolation 
to an isotropic 1024 × 1024 × 512 pixels data volume. Resampling was performed because 
local contrast enhancement and local thresholding (of the automated segmentation) operated 
isotropically in 2D. 

Each data volume was resampled in a coronal plane and visualized as C-scan slices. The 
automated segmentation operates on 2D frames but was implemented on each slice in the 
volume rendering a full 3D segmentation. A typical 3D OCT scan of the LC includes a large 
number of frames, and manual segmentation of the LC microstructure in each individual 
frame is unrealistic. Therefore, performance validation in comparison with manual 
segmentation was only performed on a single randomly selected 2D frame (Fig. 1). Within 
the slice, the portion containing the LC was manually selected. 

 

Fig. 1. SS-OCT scan of healthy eye. B-scan frames are stacked (a) into a 3D data cube from 
which an individual C-mode slice is selected at random (at the location of the dotted line on 
the left) to undergo manual and automated segmentation analysis (b). 

The automated segmentation algorithm included the following steps, all performed using 
the open source FIJI software package (ImageJ version 1.47c) [28] (Fig. 2): 
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1. Image smoothing using 3D Gaussian filter with a three-pixel σz and a one-pixel σx,y to 
reduce high frequency noise (Fig. 2.1). 

2. Contrast limited adaptive histogram equalization to equalize local differences in pixel 
intensity [28] (Fig. 2.2). 

3. An automated local thresholding technique developed by Niblack [28] was used to 
binarize the image, differentiating pores in the C-mode slice from the surrounding 
LC structure (Fig. 2.3). The local thresholding algorithm required a few input 
parameters detailed in the appendix. Because two devices were used in this study, 
and each sampled the tissue at slightly different pixel resolution, these parameters 
were adjusted in accordance with the device (the method of parameter selection is 
detailed in the appendix). However, once set, the parameters were not adjusted for 
each individual image when applied to the full patient data sets. 

4. A 3D median filter was passed over the segmented volume with 1 × 1 × 3 kernel size 
(Fig. 2.4). The z filtering removes segmented pixels due to intensity drops in a single 
C-mode. This allows the automated algorithm to account for 3D continuity. Because 
this operation could result in pixels with a grey value of 127, the resulting images 
were then re-thresholded. 

5. A manually defined mask was applied to the region peripheral to the LC, restricting 
the segmented components to those within the region of interest (Fig. 2.4). Full 
processing took ~2 seconds per image. 

 

Fig. 2. Automated pore segmentation process for MAO-OCT scan. Following a 3D-Gaussian 
filter, a C-mode slice is randomly selected from the stack (1). A local contrast enhancement 
highlights local features of the structure (2), which are then thresholded (3). A 3D median filter 
removes pores unconnected in depth and the regions exterior to the visible lamina are masked 
(4). Finally, the segmentation is overlaid on the original image for subjective evaluation (5). 
The outline for automated segmentation is shown in green. 

#194669 - $15.00 USD Received 25 Jul 2013; revised 17 Oct 2013; accepted 17 Oct 2013; published 24 Oct 2013
(C) 2013 OSA 1 November 2013 | Vol. 4,  No. 11 | DOI:10.1364/BOE.4.002596 | BIOMEDICAL OPTICS EXPRESS  2600



Segmentation was also manually performed by two experienced observers masked to one 
another, clinical information, and the outcome of automated segmentation. Frames for manual 
segmentations underwent the same smoothing (step 1) and local contrast enhancement (2) as 
performed for the automated segmentation to ensure comparable conditions for analysis. 
After this preprocessing, the human observers manually demarcated regions of the image 
considered as pores using the TrakEM2 [29] feature of the FIJI image analysis software. 
When necessary, adjacent C-mode slices were consulted to discriminate pores from noise, by 
observing the continuity of local regions of low pixel intensity through the stack. The same 
peripheral mask used in the automated segmentation was applied to the manual 
segmentations. Manual delineation took on average approximately 18 minutes per image, 
which equates to nearly 6 hours for an entire volume. 

The pore segmentation was compared between the automated and manual methods, first 
qualitatively and then quantitatively by calculating sensitivity and specificity using pixels 
classified as pores on a per-pixel basis. The gold standard pore segmentations were taken as 
the pixels both observers agreed upon within the boundary of a pore. In addition, the 
following parameters were measured, using FIJI, and compared using a measurement error 
model: pore number, average pore area, average pore aspect ratio, average pore thickness, 
average beam thickness, and connective tissue volume fraction (CTVF). Pore area, and aspect 
ratio were calculated by considering each segmented pore as a particle and averaging over all 
particles in the frame. Aspect ratio refers to the ratio of the major axis to minor axis of an 
ellipse fitted to each pore. Beam thickness is taken as the average thickness of the region 
inverse to the pores within the boundaries of the laminar surface while pore thickness is a 
radial thickness measurement of segmented pores. Thicknesses were computed by expanding 
circles from each point within the segmented region until the boundary is first reached. Each 
point is assigned a value corresponding to the radius of the largest circle containing that point, 
from which a global mean ‘thickness’ can be calculated [30]. The manually defined 
peripheral mask determined external beam edges. The CTVF is a ratio of the segmented 
laminar beams to total LC area within a slice. 

The measurement error model estimated the latent ‘true’ value for each parameter within a 
subject and calculated the bias (systematic error) and imprecision (random error) component 
for each observer and the automated technique based on the set of values within the 
population. In order to allow for comparison between imprecisions, the computed values were 
adjusted for the scale bias. R Language and Environment for Statistical Computing program, 
was used for the statistical analysis (version 2.15.1; R Foundation for Statistical Computing, 
Vienna, Austria; http://www.R-project.org) [31–34]. The performance between devices was 
not compared because they scanned different study populations. Also, such analysis would be 
confounded by distinct physical differences in imaging modalities, for example improved 
speed for SS-OCT or increased lateral resolution for MAO-OCT, which are not the subject of 
the present study. 

3. Results 

The study population imaged with SS-OCT included 14 healthy and 16 glaucoma subjects 
with an average age of 55.2 ± 18.6 yrs, and an average visual field mean deviation (MD) of 
−6.39 ± 5.95 dB for glaucoma subjects. The cohort imaged with MAO-OCT had 6 healthy 
and 24 glaucoma subjects with an average age of 53.4 ± 20.0 yrs. The average MD for 
glaucoma subjects in the later population was −6.41 ± 7.20 dB. 

Subjective evaluation of the automated segmentation method, determined that there were 
no pores that were obviously misclassified (Fig. 3). Subjective comparison of pore 
segmentation showed strong agreement between segmentation methods in regions of the 
lamina with good signal strength (Figs. 4 and 5). Segments of the image with poorer signal 
highlighted the regions of disparity between the segmentation methods (Fig. 5). However, 
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disagreement between observers seemed to appear as much as between observer and 
automated segmentation. 

 

Fig. 3. Automated segmentation results for MAO-OCT (a-c) and SS-OCT (d-f). Solid arrow 
(a) points to a region where blood vessel shadow is unmasked, and as a result the pore 
boundaries exhibit irregular boarders within the shadow. Dotted arrow (c) shows region where 
small adjacent pores are combined into a single pore. 
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Fig. 4. The unprocessed C-mode slice (a) and corresponding segmentation (b) for a scan of a 
healthy eye taken with the SS-OCT device. For pores identified by both automated and manual 
segmentations the automated pores are colored red and manual are colored blue so that 
overlapping segmentation appears as purple. Pores identified only by the automated method 
are colored yellow and those seen solely in the manual segmentation are colored green. 
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Fig. 5. The unprocessed C-mode slice (a,c) and corresponding segmentation (b,d) for scans of 
one glaucomatous (top) and one healthy eye (bottom) taken with the MAO-OCT system. 
Segmentations are colored according the scheme outlined in Fig. 4. The top image shows 
relatively good agreement between manual and automated methods, while the bottom images 
exhibit regions of segmentation disagreement; the arrow points to pores identified in the 
automated method but not manually. These locations exhibits low signal-to-noise ratio in the 
original image (c), which explains the discrepancy. 

Pore areas varied greatly within eyes, throughout the population, and between devices: 
some pores were as small as 10 pixels2 while others stretched as large as several thousand 
pixels2. The largest observed pore for SS-OCT was 2441 pixels2 and for MAO-OCT the 
largest was 3588 pixels2. The standard deviation of mean pore area through the population 
was 67.2 pixels2 for SS-OCT and 71.4 pixels2 for MAO-OCT. 

Using manual segmentation as gold standard, average sensitivity and specificity of the 
automated segmentation was 82.3% and 91.0% for SS-OCT, and 80.1% and 88.0% for MAO-
OCT, respectively. The inter-observer agreement constituted 85.5% of segmented pixels for 
SS-OCT and 87.0% for MAO-OCT. Tables 1 and 2 summarize the measurements values, and 
imprecision for the two graders and the automated segmentation. For both imaging modalities 
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the estimated imprecisions, when accounting for scale bias of the parameters, are similar 
when comparing between manual segmentations and when comparing between manual and 
automated segmentations. None of the parameter averages or imprecision values showed 
statistically significant differences between the manual and automated methods. 

Table 1. Average measurement and imprecision estimate for each segmentation method 
using SS-OCT 

Parameter Average Imprecision 

Auto Obs. 1 Obs. 2 Auto Obs. 1 Obs. 2 

Pore number 99.7 94.1 87.8 19.04 20.40 21.59 

Pore area (pixels2) 201.2 211.4 268.9 42.0 29.3 42.9 

Pore aspect ratio 2.05 1.77 1.71 0.096 0.118 0.100 

Pore Thickness 11.19 12.81 15.36 0.61 0.45 0.00 

Beam Thickness 20.29 22.53 22.62 1.51 0.54 0.53 

CTVF 0.748 0.748 0.693 0.02 0.03 0.02 

Obs – Observer. CTVF – Connective Tissue Volume Fraction. 

Table 2. Average measurement and imprecision estimate for each segmentation method 
using MAO-OCT 

Parameter Average Imprecision 

Auto Obs. 1 Obs. 2 Auto Obs. 1 Obs. 2 

Pore number 71.3 82.4 90.2 9.63 8.59 7.49 

Pore area (pixels2) 475.8 356.0 379.1 45.3 57.6 54.19 

Pore aspect ratio 2.27 1.76 1.67 0.23 0.00 0.43 

Pore Thickness 16.73 17.40 19.57 0.47 0.46 0.80 

Beam Thickness 23.16 26.28 23.99 0.80 0.65 0.87 

CTVF 0.667 0.643 0.591 0.01 0.02 0.03 

Obs – Observer. CTVF – Connective Tissue Volume Fraction. 

4. Discussion and conclusion 

Using two prototype OCT devices, 3D LC scans were acquired and automatically segmented 
using a customized algorithm. Single C-mode slices were selected at random from each 
scanning volume and two observers manually delineated pores. Their outcome was compared 
with an automated algorithm for identifying porous features. The automated algorithm 
performed comparably to the observers. 

The performance of the software was tested in this study on 2D images. Yet, it should be 
emphasized that this segmentation method is fully operational on 3D scans providing a novel 
method for microstructural segmentation of 3D OCT scans of the LC. The method is also 
applicable in other imaging modalities visualizing LC microstructure, although differences in 
image size, contrast, and noise characteristics should be considered in order to attain good 
segmentation performance. 
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The automated LC segmentation analysis we propose includes multiple steps. A local 
contrast enhancement was chosen because the average image intensity varied through 
individual B-scans in the 3D volume. Nevertheless, our primary interest was in quantifying 
pores, which have local drops in intensity. The local enhancement provides better pixel-scale 
contrast that aids visualization of pore edges without substantially changing the appearance of 
global features. The Gaussian filter adequately removed noise, improving the overall image 
quality. The 3D median filter with a large Z radius, discriminated local intensity drops in 
isolated C-mode slices from those present in multiple sequential slices and more likely to be 
classified as pores by a human observer. Taken together, the performance of the automated 
segmentation was subjectively judged to adequately delineate the lamina microstructure using 
both OCT systems. 

The study was performed using images acquired by 2 prototype clinical OCT devices. 
These devices were selected due to their ability to produce detailed images of the LC. 
Moreover, these devices provided access to the raw images before further processing; while 
all commercial devices provide only post-processed images. Finally, to test the robustness of 
the segmentation method we used two independent OCT devices that employ different 
methodologies and physical properties. 

Varying disagreement between observers for manual segmentation reveals the difficulty 
with subjective assessment as a gold standard for LC segmentation. Nevertheless, acceptable 
sensitivity and specificity of the automated method was noted with both devices. For each 
modality the automated analysis tends to provide lower pore thickness values and an overall 
more elliptical shape of the pores (higher aspect ratio) than manual segmentations. The 
difference in aspect ratio may be due to the automated method connecting adjacent pores 
separated by low contrast connective tissue. This may also contribute to the relatively low 
pore thickness values since connections tend to be thinner than the pores they connect. 
Because thickness is computed by expanding circles from each point within the segmented 
region until the boundary is first reached, having a narrow connection limits the maximal size 
of the circle leading to lower pore thickness. Merging pores would also decrease pore number 
while increasing pore area: all of which are seen with MAO-OCT. The discordance in number 
and area observed with SS-OCT might be explained by higher sensitivity of the automated 
method to local signal intensity drops than either observer. These small pores would interrupt 
beam structure, decreasing beam thickness, pore thickness, and average pore area while 
increasing pore number. 

Two of the tuned parameters in the automated algorithm address local contrast 
enhancement, but depending on the size of segmented features some local intensity drops are 
not detected. Also, pore segmentations are filtered in the Z-direction to remove noise due to 
intensity drops in single slices. This may result in the merging or splitting of pores, which 
bifurcate with depth as they pass through the lamina. The depth position of a split or merge 
varies subjectively and the decision of observers sometimes disagreed with the outcome of 
the automated method. The most robust parameter appeared to be CTVF. Pore number, size, 
and aspect ratio were sensitive to the splitting and merging of pores, and to a lesser degree so 
were beam and pore thickness. Ratio measurements provide a macroscopic look at the fine 
structure without over-weighing pixels with indefinite classifications. Nevertheless, 
measurement imprecision, or variability, was similar for manual and automated analysis: 
within 4.0% of one another (compared to 3.7% between observers). When combined with the 
favorable outcome of subjective evaluation, the similarity in imprecision and lack of 
statistically significant difference in any of the parameters indicated that the automated 
method described in this paper is an effective tool for LC segmentation. 

Some discrepancies between manual and automated segmentation methods arise in 
regions of blood vessel shadow and other areas of low signal-to-noise ratio (SNR) (Figs. 3 
and 5). While pores seem present, the lack of clear pore boundaries makes manual delineation 
difficult, and as a result inter-observer agreement is low. The automated algorithm processes 

#194669 - $15.00 USD Received 25 Jul 2013; revised 17 Oct 2013; accepted 17 Oct 2013; published 24 Oct 2013
(C) 2013 OSA 1 November 2013 | Vol. 4,  No. 11 | DOI:10.1364/BOE.4.002596 | BIOMEDICAL OPTICS EXPRESS  2606



these regions the same as regions of high SNR, but because local pixel intensities exhibit 
different characteristics, segmentation will fail without adaptive parameter values. Finding 
appropriate parameter values is impossible without robust manual segmentation, and 
therefore regions of low SNR should be masked. Future work may incorporate compensation 
techniques to improve contrast in regions of low SNR. 

A limitation of this study is the relatively small number of scans that were analyzed. The 
heavily labor-intensive procedure of manually delineating numerous pores in each scan 
restricts the feasibility of a larger cohort. As a result, confidence intervals on imprecision 
values could not be reliably established. In fact, this limitation highlights the necessity of such 
an automated technique, particularly when used on a dense 3D volume routinely and rapidly 
acquired by OCT. 

In conclusion, an automated method for segmenting 3D LC structure within in-vivo OCT 
scans of the human optic nerve head performed similarly to manual segmentation but did so 
over 100 times faster. The automated algorithm permits rapid 3D segmentation for use in 
broader population studies of the LC structure. 

7. Appendix 

Parameter selection for the contrast limited adaptive histogram equalization (CLAHE) and 
auto local thresholding steps of the segmentation process were performed for each device 
using a 15 scan training set of randomly selected eyes. The parameters input into the CLAHE 
filter were block-size—the size of the local region on which the histogram adjustment is 
applied—and the slope—the degree of contrast stretching occurring in a local window. For 
the thresholding step the adjustable parameters appear in the local thresholding algorithm [35] 

 
background, If ;

object, else 

original

segmented

I k c
I

μ σ> + × +
= 
  

 
 (1) 

where I is the pixel intensity, μ is the mean pixel value for the local region, σ is the standard 
deviation within this region, and k and c are adjustable constants. The size of the local region 
also has an adjustable radius. The complexity of relationships between the five tunable 
parameters presented a technical challenge for parameter selection. 

Using the training set, each parameter value was iterated over regularly spaced values 
centered on values assessed to produce acceptable results. The total number of permutations 
of parameter values was 2500. Each permutation’s automated segmentation was then 
compared with the manual segmentation, and specificity and sensitivity was calculated, which 
were then averaged over the training set. The standard deviation of sensitivity and specificity 
was also calculated throughout the training set to provide a measure of the consistency of a 
set of parameters. The parameter values producing the twenty highest sensitivity and 
specificity averages (all were within 0.1% of the maximum sensitivity-specificity average) 
were subjectively evaluated by overlaying their segmentations on the original images, and the 
set of parameters producing the best segmentation was subjectively selected (Table 3). 

Table 3. Final parameter values selected for segmentation for SS-OCT and MAO-OCT 

 CLAHE 
Filter 

Radius 
(pixels) 

CLAHE 
Filter Slope 

Local Block 
Size 

(pixels) 

Parameter 1 
(k) 

Parameter 2 
(c) 

SS-OCT 61 2.0 20 −0.1 20 

MAO-OCT 111 2.0 20 −0.1 10 
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