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ABSTRACT  

Elevated intraocular pressure (IOP) deforms the lamina cribrosa (LC), a structure within the optic nerve head (ONH) 
in the back of the eye. Evidence suggests that these deformations trigger events that eventually cause irreversible 
blindness, and have therefore been studied in-vivo using optical coherence tomography (OCT), and ex-vivo using 
OCT and a diversity of techniques. To the best of our knowledge, there have been no in-situ ex-vivo studies of LC 
mechanics. Our goal was two-fold: to introduce a technique for measuring 3D LC deformations from OCT, and to 
determine whether deformations of the LC induced by elevated IOP differ between in-vivo and in-situ ex-vivo 
conditions. A healthy adult rhesus macaque monkey was anesthetized and IOP was controlled by inserting a 27-
gauge needle into the anterior chamber of the eye. Spectral domain OCT was used to obtain volumetric scans of the 
ONH at normal and elevated IOPs. To improve the visibility of the LC microstructure the scans were first processed 
using a novel denoising technique. Zero-normalized cross-correlation was used to find paired corresponding 
locations between images. For each location pair, the components of the 3D strain tensor were determined using 
non-rigid image registration. A mild IOP elevation from 10 to 15mmHg caused LC effective strains as large as 3%, 
and about 50% larger in-vivo than in-situ ex-vivo. The deformations were highly heterogeneous, with substantial 3D 
components, suggesting that accurate measurement of LC microstructure deformation requires high-resolution 
volumes. This technique will help improve understanding of LC biomechanics and how IOP contributes to 
glaucoma. 
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1. INTRODUCTION 

Glaucoma is the second leading cause of blindness in the world according to the World Health Organization 
(WHO)1. Although the mechanisms leading to glaucoma remain unclear, risk of the disease increases with elevated 
intraocular pressure (IOP), which is known to deform the lamina cribrosa (LC) in the optic nerve head (ONH)1 
(Figure 1a). The LC provides structural support to the retinal ganglion cell axons that transmit visual information to 
the brain as they exit the eye (Figure1b), and it is hypothesized that glaucomatous vision loss is the result of tissue 
damage within the ONH caused by excessive IOP-related LC deformation2. LC deformation has previously been 
studied with ex-vivo LC deformation testing2-4, although these tests were conducted on enucleated eyes, and not in-
situ. The development of optical coherence tomography (OCT) has spawned another set of studies of LC testing in-
vivo5,6. However, it is not known how the deformation response of the LC differs between in-vivo and in-situ ex-
vivo conditions, and which complicates obtaining a comprehensive understanding of LC mechanics. In this 
manuscript we present results from a study of how LC deformation induced by elevation of IOP differs between in-
vivo and in-situ ex-vivo conditions. To do this, we present a new method to measure 3D LC deformation under 
elevated IOP from OCT images, which overcomes the challenges presented by speckle noise and shadowing 
artifacts. Specifically, as a proof-of-principle and to demonstrate the sensitivity of the technique, we focus on the 
deformations caused by a mild increase in IOP from 10 mmHg to 15 mmHg.  
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2.2 Digital Volume Correlation  
We used the Digital Volume Correlation (DVC)9 technique to determine the deformation between multiple OCT 
scan images. For simplicity, the images were treated as 3D volumetric images. The basic concept of DVC is to 
establish a mapping between a reference image and a deformed image. The reference image was treated as a 
baseline image, which was then used to compare with each deformed image. The result of this mapping was a 
material transformation function between two volumes. Generally, we assume the following material transformation 
function:  Φ(x) = x	 + U(x) ≈ x	 + U(x) + F(x)(x − x)    (1) Φ(x): Material Transformation at x	 x: Reference Point Vector x: Position Vector U(x): Grid Displacement Vector [u, v, w] F(x): Deformation Gradient Tensor at x: F(x) 

F(x) = ێێۏ
ப୳ப୶ۍێ ப୳ப୷ ப୳பப୴ப୶ ப୴ப୷ ப୴பப୵ப୶ ப୵ப୷ ப୵ப ۑۑے

ېۑ
       (2) 

 
The material transformation function will be evaluated through the minimization of the error of Zero-Normalized 
Cross Correlations (ZNCC)10, which is a numerical metric for finding a similarity. There are many optimization 
methods to minimize the error of ZNCC. In the computation, we applied the Nelder-Mead method when the 
evaluation of gradients at direction of convergence is difficult11. eେେ = 1 −	 ∑ ൫(୶)ିതీതത൯൫൫୶	ᇲ൯ିీᇲതതതതത൯౮ಣీට∑ ൫(	୶)ିതీതത൯మ౮ಣీ ∙ට∑ ൫(୶	ᇲ)ିీᇲതതതതത൯మ౮ᇲಣీᇲ     (3) D: Reference Image Subset D′: Deformed Image Subset f(x) : Voxel Value at x	in Reference Image Subset g(xᇱ): Voxel Value at xᇱ in Deformed Image Subset fୈഥ 	: Mean Value of Reference Image Subset gୈᇱതതതത: Mean Value of Deformed Image Subset 

 
The minimization of correlation values indicates the best matching point in the search region of the deformed 
volume, and from the matched points the displacement vector can be calculated. The full-field deformation gradient 
can be computed from the displacement field at the matched points using a second order interpolation method12. The 
Lagrangian strain tensor (E) is then calculated as: E = ଵଶ (FF − I)        (4) E: Lagrangian Strain Tensor F: Deformation Gradient Tensor I: Identity Tensor 
 
From the strain tensor, the maximum shear strain and effective strain components were computed from the principal 
strains (eigenvalues of the strain tensor) using Eq. 5 and 6 respectively.  E୫ୟ୶ୱ୦ୣୟ୰ = |భିయ|ଶ        (5) Pଵ: First Principal Strain Pଷ: Third Principal Strain Eୣୣୡ୲୧୴ୣ = ටଶଷ ε୧୨ᇱ ε୧୨ᇱ        (6) ε୧୨ᇱ = ε୧୨	 − 	పఫതതത: Deviatoric Strain εనߝ 	തതതത = ଵଷ  : Hydrostatic Strainߝߜ
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The maximum shear strain is a measure of tearing and bending deformations; whereas, the effective strain is a 
singular measure of the total deformation including stretch and compression. Prior to analysis, OCT images were 
scaled to make the volumes isotropic, and the images were cropped to create a region of interest (ROI). A low pass 
filter and a 3D median filter were utilized to remove the speckle noise from OCT scan, and a sigmoid function was 
applied to improve the contrast of the image. To compute the deformations, we first aligned images globally using a 
linear transformation to reduce large rigid body motion and rotation, thus minimizing the pseudo-motions introduced 
into the experiment. Furthermore, it sped up the local search and optimization. The reversible linear transformation 
can be described using Eq. 7. P୧ᇱ = C + R ∙ (P୧ − Cୱ)       (7) P୧ᇱ: New Voxel Point [x୧ y୧ z୧] P୧	: Old Voxel Point 		[x୧ᇱ y୧ᇱ z୧ᇱ] Cୱ: Rotation Center [c୶ c୷ c] R	: Rotation Tensor  

 
To improve computational efficiency, we discretized the image domain numerically using seeds and nodes similar to 
a finite element mesh13. At each of those seeds, a material transformation was evaluated. Using those ‘local’ material 
transformations, the details of objects can be approximated and aligned. Since displacements at each node were 
different, this local alignment was nonlinear and could not be reversed. Once the computation was finished, we used 
the deformation vectors to check the registration. Several registration iterations were performed to make sure a good 
alignment of tissues until the change of Mean Square Error (MSE) between the reference image and the registered 
image is less than 1%. In addition, we verified the registrations by visual inspection throughout the volume. 

3. RESULTS 

Excellent registrations were obtained. In Figure 2, the in-vivo LC tissue registration verification is shown in the left-
hand column and the in-situ ex-vivo LC tissue registration is shown in the right-hand column. The in-vivo LC has a 
significant blood vessel shadow region in the middle; whereas, the in-situ ex-vivo has remarkably little blood vessel 
shadow. The baseline pressure (10mmHg) image is shown in red while the elevated IOP image (15 mmHg) is shown 
in green, with yellow representing overlap. Before registration, the area of the unmatched region was large. After the 
registration, more yellow regions are noticeable, and the majority of the LC region was aligned well and the lamina 
pores were clearly visible. After registration, the correlation values, an indicator of image similarity, increased from 
71.3% to 86.5% for in-vivo measurement and from 94.8% to 97.3% for in-situ ex-vivo scans. To make a fair 
comparison between in-vivo and in-situ ex-vivo conditions, the blood vessel shadow shown in the in-situ LC was 
manually selected and used as a mask on the in-situ ex-vivo LC (Figure 3). Figure 4 shows LC surfaces colored 
according to the strains measured between 10 mmHg and 15 mmHg for both in-vivo and in-situ ex-vivo conditions. 
In-vivo, the median effective strain at 15 mmHg, compared to baseline, was 1.5%, while the median effective strain 
in-situ ex-vivo was only 1%. Maximum strains reached levels above 3% in both conditions. From the variance of 
strain field, the in-vivo LC has a larger range of deformation when compared to the in-situ ex-vivo LC.  
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